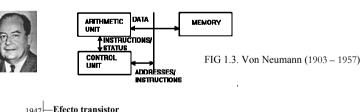
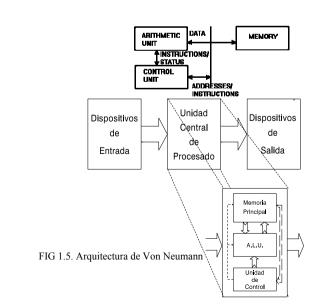
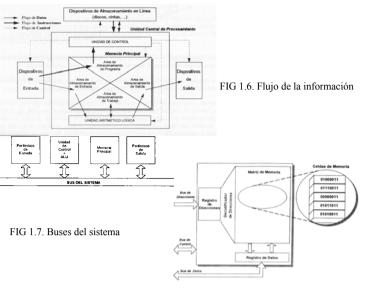
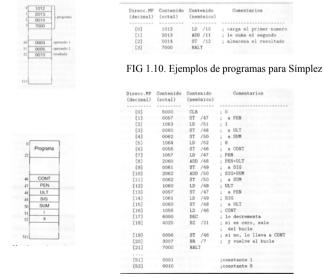

#### ARQUITECTURA DE LOS SISTEMAS BASADOS EN MICROPROCESADOR

- Historia
- Bloques funcionales
- · Dimensionamiento
- Estructura CPU
- Concepto de programa
- Interrupciones
- Buses

- Memoria
- Entrada / Salida
- Ejemplo de arquitectura: Intel8086
- Ejemplo de sistema basado en μP: PC



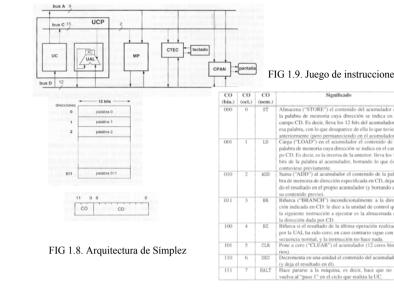
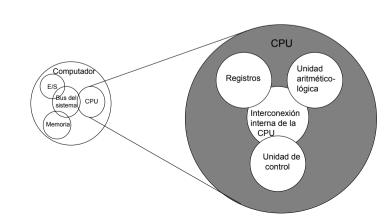
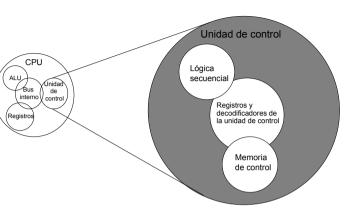



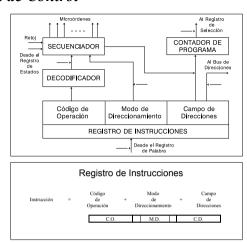

FIG 1.4. Evolución de la informática



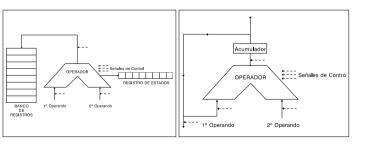


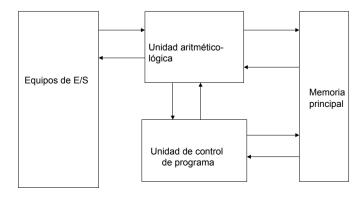




## Estructura de la CPU

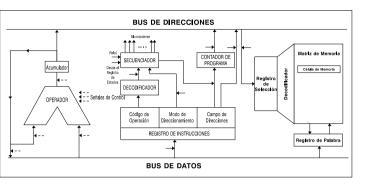



### Estructura de la unidad de control




#### Unidad de Control




#### Unidad Aritmético-Lógica: ALU



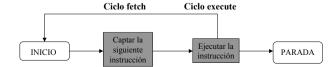
## Estructura de la máquina de von Neumann



#### Descripción General



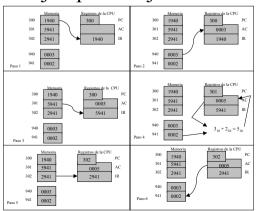
## Concepto del programa


- Los sistemas cableados no son flexibles.
- El harware de uso general puede realizar distintas funciones, según las señales de control aplicadas.
- En lugar de configurar el hardware, se proporciona un nuevo conjunto de señales de control.

# Componentes del computador: esquema de dos niveles



### Ciclo de instrucción básico


- Dos pasos:
  - Fetch (Captación)
  - Execute (Ejecución)

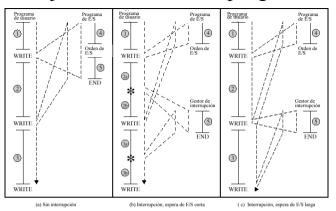


#### Ciclo fetch

- El contador de programa (PC) contiene la dirección de la instrucción que se debe captar a continuación.
- El procesador capta la instrucción que indica el PC desde la memoria
- El registro PC se incrementa,
  - a no ser que se indique lo contrario.
- Esta instrucción se carga en el registro de instrucción (IR).
- El procesador interpreta la instrucción y lleva a cabo la acción requerida.

## Ejemplo de ejecución




#### Ciclo execute

- Procesador- memoria
  - Transferencia de datos desde la CPU a la memoria.
- Procesador-E/S
  - Transferencias de datos entre la CPU y un módulo de E/S.
- Procesamiento de datos
  - Realización de alguna operación aritmética o lógica con los datos.
- Control
  - Alteración de la secuencia de ejecución.
  - Ejemplo: la instrucción de salto
- · Combinación de estas acciones

## Interrupciones

- Mecanismo mediante el que otros módulos (Ejemplo: E/S) pueden interrumpir el procesamiento normal de la CPU.
- Programa
  - Ejemplo: desbordamiento aritmético ("overflow"), división por cero
- Temporización
  - Generadas por un temporizador interno al procesador.
  - Permite realizar ciertas funciones de manera regular.
- E/S
  - Generadas por un controlador E/S.
- Fallo de hardware
  - Ejemplo: error de paridad en la memoria

## Flujo de control de un programa



## Interrupciones múltiples

#### • Interrupciones inhabilitadas

- El procesador puede y debe ignorar la señal de petición de interrupción si se produce una interrupción en ese momento.
- La interrupción se mantiene pendiente y se examinará una vez se haya activado la primera interrupción.
- Las interrupciones se manejan en un orden secuencial estricto.

#### • Definir prioridades

- Una interrupción de prioridad más alta puede interrumpir a un gestor de interrupción de prioridad menor.
- Cuando se ha generado la interrupción de prioridad más alta, el procesador vuelve a la interrupción previa.

## Ciclo de interrupción

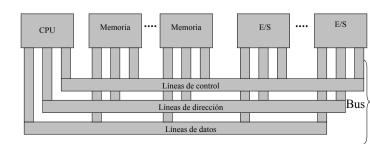
- · Añadido al ciclo de instrucción.
- El procesador comprueba si se ha generado alguna interrupción,
  - indicada por la presencia de una señal de interrupción.
- Si no hay señales de interrupción, capta la siguiente instrucción.
- Si hay alguna interrupción pendiente:
  - Se suspende la ejecución del programa en curso
  - Guarda su contexto
  - Carga el PC con la dirección de comienzo de una rutina de gestión de interrupción
  - Proceso interrumpido
  - Volver a almacenar el contexto y continuar con el programa interrumpido

#### Buses

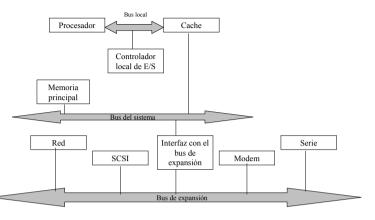
- Existe una serie de sistemas de interconexión.
- Las estructuras sencillas y múltiples son las más comunes.
- Ejemplo: control/dirección/bus de datos (PC)
- Es un medio de transmisión entre dos o más dispositivos.
- Suele constituirse en grupos:
  - Un bus está constituido por varios caminos de comunicación, o líneas.
  - Ejemplo: un dato de 8 bits puede transmitirse mediante ocho líneas del bus

#### Bus de datos

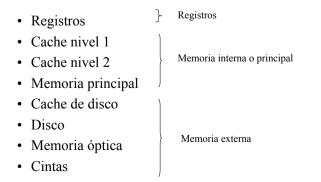
- Transmite datos.
  - A este nivel no existe diferencia alguna entre "datos" y "instrucciones".
- La anchura del bus es un factor clave a la hora de determinar las prestaciones.
  - 8, 16, 32, 64 bits.


#### Bus de control

- Información sobre señales de control y sobre temporización:
  - Señal de escritura/lectura en memoria.
  - Petición de interrupción.
  - Señales de reloj.


#### Bus de dirección

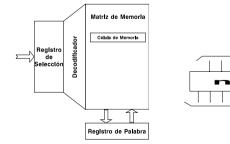
- Designa la fuente o destino del dato.
- Ejemplo: cuando el procesador desea leer una palabra (datos) de una determinada parte en la memoria.
- La anchura del bus determina la máxima capacidad de memoria posible en el sistema.
  - Ejemplo: 8080 tiene un bus de dirección de 16 bits, lo que supone 64k de espacio para direcciones


## Esquema de interconexión mediante un bus

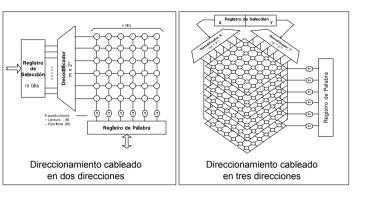


## Arquitectura de bus tradicional

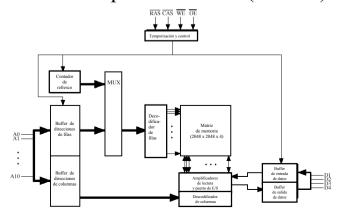



## Jerarquía de memoria




## Tipos de buses

- Dedicados
  - Uso de líneas separadas para direcciones y para datos.
- Multiplexados
  - Uso de las mismas líneas.
  - Línea de control de dirección válida o de datos válida.
  - Ventaja: uso de menos líneas.
  - Desventajas:
    - Se necesita una circuitería más compleja.
    - · Posible reducción de las prestaciones.

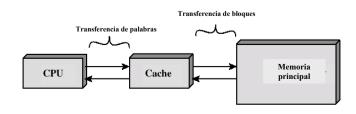

#### Memoria Principal - Organización Interna



#### Memoria Principal - Direccionamiento



## DRAM típica de 16 Mb (4M x 4)




## Organización

- Un chip de 16Mbits podría estar estructurado en 1 Mpalabras de 16 bits.
- Un sistema de "un bit por chip" tiene 16 lotes de un chip de 1 Mbits, por lo que por cada chip corresponde 1bit de cada palabra y así, sucesivamente.
- Un chip de 16 Mbits puede estar estructurado en cuatro matrices cuadradas de 2048 x 2048 elementos
  - Reduce el número de terminales de dirección.
    - Direccionamiento de filas y de columna multiplexado.
    - 11 terminales de dirección (2<sup>11</sup>=2.048).
    - Una terminal más duplica el rango de los valores, así que la capacidad se multiplica por cuatro.

#### Cache

- Cantidad pequeña de memoria rápida.
- Está entre la memoria principal normal y la CPU.
- Puede localizarse en el chip o módulo de la CPU.



## Operación de la cache

- La CPU solicita contenidos de la localización de memoria.
- Comprueba la cache para estos datos.
- Si está, la obtiene de la cache (rápidamente).
- Si no está, lee el bloque requerido a partir de la memoria principal hasta la cache.
- Después, de la cache los entrega a la CPU.
- La cache incluye etiquetas para identificar qué bloque de la memoria principal está en cada ranura de la cache.

## E/S programada

- La CPU tiene control directo sobre la E/S
  - Comprobación del estado del dispositivo
  - Órdenes de lectura/escritura
  - Transferencia de datos
- La CPU espera a que el módulo E/S acabe la operación
- Hace perder tiempo a la CPU

#### Técnicas de E/S

- Programada
- Mediante interrupciones
- Acesso directo a memoria (DMA)

## E/S mediante interrupciones

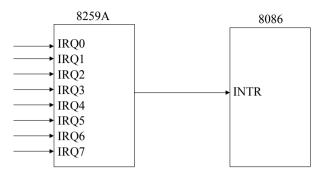
- La CPU no tiene que esperar.
- No se repite la comprobación del sistema.
- El módulo E/S envía una interrupción cuando está listo.

# Identificación del módulo que interrumpe (1)

- Diferentes líneas para cada módulo
  - -PC
  - Limita el número de dispositivos
- · Consulta software
  - La CPU consulta a cada módulo
  - Resulta lenta

## Ejemplo: bus de PC

- El 80386 tiene sólo una línea de petición de interrupción.
- Los sistemas basados en el 80386 emplean un árbitro de interrupciones 82C59A.
- El 82C59A tiene 8 líneas de interrupción.


## Identificación del módulo que interrumpe (2)

- Conexión en cadena o consulta hardware
  - La línea de reconocimiento de interrupción se conecta encadenando los módulos.
  - El módulo que responde coloca un vector en el bus.
  - La CPU emplea el vector para identificar la rutina de servicio.
- Arbitraje de bus
  - El módulo debe disponer del control del bus antes de lograr la interrupción.
  - Ej: bus PCI y puerto SCSI

### Secuencia de acontecimientos

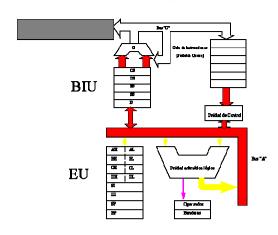
- El 8259A acepta la interrupción.
- El 8259A determina la prioridad.
- El 8259A activa la señal 8086 (sitúa la señal INTR en la línea adecuada).
- El procesador reconoce la señal.
- El 8259A coloca el vector apropiado en el bus de datos.
- El procesador procesa la interrupción.

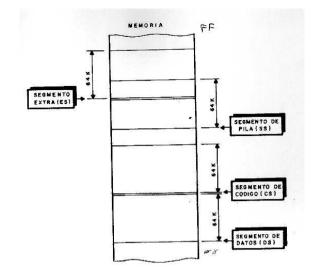
## Diseño de interrupción del PC

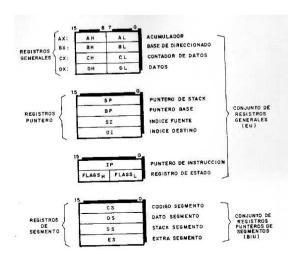


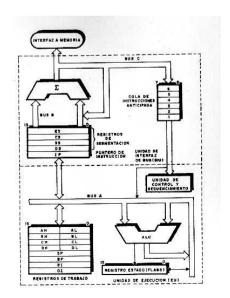
#### Funcionamiento del DMA

- Requiere un módulo adicional (hardware) en el bus
- El módulo del DMA obtiene el control de la CPU para transferir datos.


#### Acceso directo a memoria


- La E/S programada y con interupciones necesita la intervención directa de la CPU.
  - La velocidad de transferencia es limitada.
  - La CPU permanece ocupada mucho tiempo.
- El DMA es la solución.


#### Mecanismo del DMA

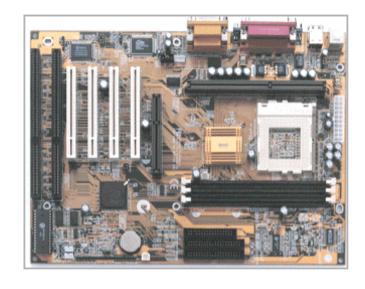

- La CPU envia una orden al módulo de DMA:
  - Lectura/Escritura
  - Dirección del dispositivo
  - Dirección inicial de memoria para datos
  - Cantidad de datos que hay que transferir
- La CPU continua con otro trabajo.
- El módulo del DMA realiza la transferencia.
- El módulo del DMA envía una señal de interrupción cuando ha acabado.

## Intel 8086










#### PC Alimentación Conectores Zócalo del micro teclado, ratón, USB... Conectores disco duro y disquetera Ranura AGP Ranuras PCI Ranuras

memoria

Ranuras

ISA



